
3/3/2008 CS267 Guest Lecture 2 1

CS 267
Dense Linear Algebra:

Parallel Gaussian Elimination

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr08

3/3/2008 CS267 Guest Lecture 2 2

Outline

• Motivation, overview for Dense Linear Algebra

• Review Gaussian Elimination (GE) for solving Ax=b

• Optimizing GE for caches on sequential machines

- using matrix-matrix multiplication (BLAS)

• LAPACK library overview and performance

• Data layouts on parallel machines

• Parallel Gaussian Elimination

• ScaLAPACK library overview

• Eigenvalue problems

• Current Research

3/3/2008 CS267 Guest Lecture 2 3

Sca/LAPACK Overview

3/3/2008 CS267 Guest Lecture 2 4

Success Stories for Sca/LAPACK

Cosmic Microwave Background
 Analysis, BOOMERanG

 collaboration, MADCAP code (Apr.
 27, 2000).

ScaLAPACK

• Widely used

- Adopted by Mathworks, Cray,
 Fujitsu, HP, IBM, IMSL, NAG,
 NEC, SGI, …

- >84M(56M in 2006) web hits
 @ Netlib (incl. CLAPACK,
 LAPACK95)

• New Science discovered through
 the solution of dense matrix

 systems

- Nature article on the flat

 universe used ScaLAPACK

- Other articles in Physics
 Review B that also use it

- 1998 Gordon Bell Prize

- www.nersc.gov/news/reports

/newNERSCresults050703.pdf

3/3/2008 CS267 Guest Lecture 2 5

Motivation (1)

3 Basic Linear Algebra Problems

1. Linear Equations: Solve Ax=b for x

2. Least Squares: Find x that minimizes ||r||2 ri
2

 where r=Ax-b

• Statistics: Fitting data with simple functions

3a. Eigenvalues: Find and x where Ax = x

• Vibration analysis, e.g., earthquakes, circuits

3b. Singular Value Decomposition: ATAx= 2x

• Data fitting, Information retrieval

Lots of variations depending on structure of A

• A symmetric, positive definite, banded, …

3/3/2008 CS267 Guest Lecture 2 6

Motivation (2)

• Why dense A, as opposed to sparse A?

- Many large matrices are sparse, but …

- Dense algorithms easier to understand

- Some applications yields large dense
 matrices

- LINPACK Benchmark (www.top500.org)

• “How fast is your computer?” =
 “How fast can you solve dense Ax=b?”

- Large sparse matrix algorithms often yield
 smaller (but still large) dense problems

3/3/2008 CS267 Guest Lecture 2 7

Current Records for Solving Dense Systems (2007)

 Gigaflops

Machine n=100 n=1000 Any n Peak

IBM BlueGene/L 478K 596K

 (213K procs) (478 Teraflops)

 (n=2.5M)

NEC SX 8

 (8 proc, 2 GHz) 75.1 128

 (1 proc, 2 GHz) 2.2 15.0 16

…

www.netlib.org, click on Performance Database Server

Palm Pilot III .00000169

 (1.69 Kiloflops)

3/3/2008 CS267 Guest Lecture 2 8

Gaussian Elimination (GE) for solving Ax=b

• Add multiples of each row to later rows to make A upper
 triangular

• Solve resulting triangular system Ux = c by substitution

… for each column i

… zero it out below the diagonal by adding multiples of row i to later rows

for i = 1 to n-1

 … for each row j below row i

 for j = i+1 to n

 … add a multiple of row i to row j

 tmp = A(j,i);

 for k = i to n

 A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

0
.
.
.
0

0
.
.
.
0

0
.
0

0

0
0

0
.
.
.
0

0
.
.
.
0

0
.
0

0
.
.
.
0

0
.
.
.
0

0
.
.
.
0

After i=1 After i=2 After i=3 After i=n-1

…

3/3/2008 CS267 Guest Lecture 2 9

Refine GE Algorithm (1)

• Initial Version

• Remove computation of constant tmp/A(i,i) from
 inner loop.

… for each column i

… zero it out below the diagonal by adding multiples of row i to later rows

for i = 1 to n-1

 … for each row j below row i

 for j = i+1 to n

 … add a multiple of row i to row j

 tmp = A(j,i);

 for k = i to n

 A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

for i = 1 to n-1

 for j = i+1 to n

 m = A(j,i)/A(i,i)

 for k = i to n

 A(j,k) = A(j,k) - m * A(i,k)

m

3/3/2008 CS267 Guest Lecture 2 10

Refine GE Algorithm (2)

• Last version

• Don’t compute what we already know:
 zeros below diagonal in column i

for i = 1 to n-1

 for j = i+1 to n

 m = A(j,i)/A(i,i)

 for k = i+1 to n

 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1

 for j = i+1 to n

 m = A(j,i)/A(i,i)

 for k = i to n

 A(j,k) = A(j,k) - m * A(i,k)

Do not compute zeros

m

3/3/2008 CS267 Guest Lecture 2 11

Refine GE Algorithm (3)

• Last version

• Store multipliers m below diagonal in zeroed entries
 for later use

for i = 1 to n-1

 for j = i+1 to n

 m = A(j,i)/A(i,i)

 for k = i+1 to n

 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1

 for j = i+1 to n

 A(j,i) = A(j,i)/A(i,i)

 for k = i+1 to n

 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store m here

m

3/3/2008 CS267 Guest Lecture 2 12

Refine GE Algorithm (4)

• Last version

for i = 1 to n-1

 for j = i+1 to n

 A(j,i) = A(j,i)/A(i,i)

 for k = i+1 to n

 A(j,k) = A(j,k) - A(j,i) * A(i,k)

• Split Loop

for i = 1 to n-1

 for j = i+1 to n

 A(j,i) = A(j,i)/A(i,i)

 for j = i+1 to n

 for k = i+1 to n

 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store all m’s here before updating
 rest of matrix

3/3/2008 CS267 Guest Lecture 2 13

Refine GE Algorithm (5)

• Last version

• Express using matrix operations (BLAS)

for i = 1 to n-1

 A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))

 A(i+1:n,i+1:n) = A(i+1:n , i+1:n)

 - A(i+1:n , i) * A(i , i+1:n)

for i = 1 to n-1

 for j = i+1 to n

 A(j,i) = A(j,i)/A(i,i)

 for j = i+1 to n

 for k = i+1 to n

 A(j,k) = A(j,k) - A(j,i) * A(i,k)

3/3/2008 CS267 Guest Lecture 2 14

What GE really computes

• Call the strictly lower triangular matrix of multipliers
 M, and let L = I+M

• Call the upper triangle of the final matrix U

• Lemma (LU Factorization): If the above algorithm
 terminates (does not divide by zero) then A = L*U

• Solving A*x=b using GE

- Factorize A = L*U using GE (cost = 2/3 n3 flops)

- Solve L*y = b for y, using substitution (cost = n2 flops)

- Solve U*x = y for x, using substitution (cost = n2 flops)

• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired

for i = 1 to n-1

 A(i+1:n,i) = A(i+1:n,i) / A(i,i)

 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

3/3/2008 CS267 Guest Lecture 2 15

Problems with basic GE algorithm

• What if some A(i,i) is zero? Or very small?

- Result may not exist, or be “unstable”, so need to pivot

• Current computation all BLAS 1 or BLAS 2, but we know that
 BLAS 3 (matrix multiply) is fastest (earlier lectures…)

for i = 1 to n-1

 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)

 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

 - A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2

BLAS 1

3/3/2008 CS267 Guest Lecture 2 16

Pivoting in Gaussian Elimination

• A = [0 1] fails completely because can’t divide by A(1,1)=0

 [1 0]

• But solving Ax=b should be easy!

• When diagonal A(i,i) is tiny (not just zero), algorithm may

 terminate but get completely wrong answer

• Numerical instability

• Roundoff error is cause

• Cure: Pivot (swap rows of A) so A(i,i) large

3/3/2008 CS267 Guest Lecture 2 17

Gaussian Elimination with Partial Pivoting (GEPP)
• Partial Pivoting: swap rows so that A(i,i) is largest in column

for i = 1 to n-1

 find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|
 … i.e. largest entry in rest of column i

 if |A(k,i)| = 0
 exit with a warning that A is singular, or nearly so

 elseif k != i

 swap rows i and k of A
 end if

 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … each |quotient| 1
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

• Lemma: This algorithm computes A = P*L*U, where P is a

 permutation matrix.
• This algorithm is numerically stable in practice

• For details see LAPACK code at
http://www.netlib.org/lapack/single/sgetf2.f

3/3/2008 CS267 Guest Lecture 2 18

Problems with basic GE algorithm

• What if some A(i,i) is zero? Or very small?

- Result may not exist, or be “unstable”, so need to pivot

• Current computation all BLAS 1 or BLAS 2, but we know that
 BLAS 3 (matrix multiply) is fastest (earlier lectures…)

for i = 1 to n-1

 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)

 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

 - A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2

BLAS 1

3/3/2008 CS267 Guest Lecture 2 19

Converting BLAS2 to BLAS3 in GEPP

• Blocking

- Used to optimize matrix-multiplication

- Harder here because of data dependencies in GEPP

• BIG IDEA: Delayed Updates

- Save updates to “trailing matrix” from several consecutive
 BLAS2 updates

- Apply many updates simultaneously in one BLAS3 operation

• Same idea works for much of dense linear algebra

- Open questions remain

• First Approach: Need to choose a block size b

- Algorithm will save and apply b updates

- b must be small enough so that active submatrix consisting
 of b columns of A fits in cache

- b must be large enough to make BLAS3 fast

3/3/2008 CS267 Lecture 9 20

Blocked GEPP (www.netlib.org/lapack/single/sgetrf.f)

for ib = 1 to n-1 step b … Process matrix b columns at a time

 end = ib + b-1 … Point to end of block of b columns

 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’

 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I

 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U

 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)

 - A(end+1:n , ib:end) * A(ib:end , end+1:n)

 … apply delayed updates with single matrix-multiply

 … with inner dimension b

(For a correctness proof,
 see on-line notes from

 CS267 / 1996.)

3/3/2008 CS267 Guest Lecture 2 21

Efficiency of Blocked GEPP
(all parallelism “hidden” inside the BLAS)

Outline of rest of talk

• ScaLAPACK GEPP

• Multicore GEPP

• Rest of DLA what’s it like (not GEPP)

• Missing from ScaLAPACK - projects

• Design space more generally

• projects

3/3/2008 CS267 Guest Lecture 2 22

3/3/2008 CS267 Guest Lecture 2 23

Explicitly Parallelizing Gaussian Elimination

• Parallelization steps

- Decomposition: identify enough parallel work, but not too much

- Assignment: load balance work among threads

- Orchestrate: communication and synchronization

- Mapping: which processors execute which threads (locality)

• Decomposition

- In BLAS 2 algorithm nearly each flop in inner loop can be done in
 parallel, so with n2 processors, need 3n parallel steps,
 O(n log n) with pivoting

- This is too fine-grained, prefer calls to local matmuls instead

- Need to use parallel matrix multiplication

• Assignment and Mapping

- Which processors are responsible for which submatrices?

for i = 1 to n-1

 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)

 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)

 - A(i+1:n , i) * A(i , i+1:n)

3/3/2008 CS267 Guest Lecture 2 24

Different Data Layouts for Parallel GE

Bad load balance:

P0 idle after first

n/4 steps

Load balanced, but

 can’t easily use

 BLAS2 or BLAS3

Can trade load balance

and BLAS2/3

performance by

choosing b, but

factorization of block

column is a bottleneck

Complicated addressing,

May not want full parallelism

In each column, row

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout

 The winner!

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3 6) 2D Row and Column

 Block Cyclic Layout

0 1 2 3

Bad load balance:

P0 idle after first

n/2 steps

0 1

2 3

5) 2D Row and Column Blocked Layout

b

02/14/2006 CS267 Lecture 9 25

Distributed GE with a 2D Block Cyclic Layout

02/14/2006 CS267 Lecture 9 26

M
a
tr

ix
 m

u
lt

ip
ly

 o
f

 g
re

e
n

 =
 g

re
e
n

 -
 b

lu
e
 *

 p
in

k

3/3/2008 CS267 Guest Lecture 2 27

PDGEMM = PBLAS matrix multiply

Observations:

• For fixed N, as P increasesn

 Mflops increases, but less than

 100% efficiency

• For fixed P, as N increases,

 Mflops (efficiency) rises

DGEMM = BLAS routine

 for matrix multiply

Maximum speed for PDGEMM

 = # Procs * speed of DGEMM

Observations:

• Efficiency always at least 48%

• For fixed N, as P increases,

 efficiency drops

• For fixed P, as N increases,

 efficiency increases

Review of Parallel MatMul

• Want Large Problem Size Per

 Processor

3/3/2008 CS267 Guest Lecture 2 28

Since it can run no faster than its

 inner loop (PDGEMM), we measure:

Efficiency =

 Speed(PDGESV)/Speed(PDGEMM)

Observations:

• Efficiency well above 50% for large

 enough problems

• For fixed N, as P increases, efficiency

 decreases (just as for PDGEMM)

• For fixed P, as N increases efficiency

 increases (just as for PDGEMM)

• From bottom table, cost of solving

• Ax=b about half of matrix multiply

 for large enough matrices.

• From the flop counts we would

 expect it to be (2*n3)/(2/3*n3) = 3

 times faster, but communication

 makes it a little slower.

PDGESV = ScaLAPACK Parallel LU

3/3/2008 CS267 Guest Lecture 2 29

ScaLAPACK Performance Models (1)

ScaLAPACK Operation Counts
tf = 1

tm =

tv =

 = brow=bcol

P = prow = pcol

30

A

C

A

B C

T TT

Fork-Join vs. Dynamic Execution

Fork-Join – parallel BLAS

DAG-based – dynamic scheduling

Time

saved

•

•

Achieving Asynchronicity

32

Intel’s Clovertown Quad Core

3/3/2008 CS267 Guest Lecture 2 33

LAPACK and ScaLAPACK Scalability

• “One-sided Problems” are scalable

- Linear systems Ax=b, and least squares minx ||Ax-b||2

- In Gaussian elimination, A factored into product of 2 matrices A =
 LU by premultiplying A by sequence of simpler matrices

- Asymptotically 100% BLAS3

- LU (“Linpack Benchmark”)

- Cholesky, QR

• “Two-sided Problems” are harder

- Eigenvalue problems, SVD

- A factored into product of 3 matrices by pre and post multiplication

- ~Half BLAS2, not all BLAS3

• Narrow band problems hardest (to do BLAS3 or parallelize)

- Solving and eigenvalue problems

What could go into a linear algebra library?

Missing Routines in Sca/LAPACK

LAPACK ScaLAPACK

Linear

Equations

LU

LU + iterative refine

Cholesky

LDLT

xGESV

xGESVX

xPOSV

xSYSV

PxGESV

missing

PxPOSV

missing

Least Squares

(LS)

QR

QR+pivot

SVD/QR

SVD/D&C

SVD/MRRR

QR + iterative refine.

xGELS

xGELSY

xGELSS

xGELSD

missing

missing

PxGELS

missing

missing

missing (intent?)

missing

missing

Generalized LS LS + equality constr.

Generalized LM

Above + Iterative ref.

xGGLSE

xGGGLM

missing

missing

missing

missing

More missing routines
LAPACK ScaLAPACK

Symmetric EVD QR / Bisection+Invit

D&C

MRRR

xSYEV / X

xSYEVD

xSYEVR

PxSYEV / X

PxSYEVD

missing

Nonsymmetric EVD Schur form

Vectors too

xGEES / X

xGEEV /X

missing (driver)

missing

SVD QR

D&C

MRRR

Jacobi

xGESVD

xGESDD

missing

missing

PxGESVD

missing (intent?)

missing

missing

Generalized

Symmetric EVD

QR / Bisection+Invit

D&C

MRRR

xSYGV / X

xSYGVD

missing

PxSYGV / X

missing (intent?)

missing

Generalized

Nonsymmetric EVD

Schur form

Vectors too

xGGES / X

xGGEV / X

missing

missing

Generalized SVD Kogbetliantz

MRRR

xGGSVD

missing

missing (intent)

missing

Exploring the tuning space for Dense LA

• Algorithm tuning space includes

- Underlying BLAS (PHiPAC, ATLAS)

- Different layouts (blocked, recursive, …) and algorithms

- Numerous block sizes, not just in underlying BLAS

- Many possible layers of parallelism, many mappings to HW

- Different traversals of underlying DAGs

• Synchronous and asynchronous algorithms

- “Redundant” algorithms for GPUs

- New and old eigenvalue algorithms

- Mixed precision (for speed or accuracy)

- New “communication avoiding” algorithms for variations on standard factorizations

• Is there a concise set of abstractions to describe, generate tuning space?

- Block matrices, factorizations (partial, tree, …), DAGs, …

- PLASMA, FLAME, CSS, Spiral, Sequoia, Telescoping languages, Bernoulli, Rose, …

• Question: What fraction of dense linear algebra can be generated/tuned?

- Lots more than when we started

• Sequential BLAS -> Parallel BLAS -> LU -> other factorizations -> …

- Most of dense linear algebra?

• Not eigenvalue algorithms (on compact forms)

• What fraction of LAPACK can be done?

• “for all linear algebra problems…”

- For all interesting architectures…?

Possible class projects
• GPU related

- Best results so far do some work on GPU, some on CPU

- Try porting algorithms to NVIDIA GPU using CUDA

- Explore mixed precision algorithms

• Filling in gaps in ScaLAPACK

- User demand for various missing routines

• Eigenvalues routines on Multicore

- Compare performance of LAPACK, ScaLAPACK

- Explore multithreaded implementations (PLASMA?)

• New “communication avoiding” QR algorithm

- Implement, compare performance to Sca/LAPACK

- Try in eigenvalues routines

- Try analogous LU routine

• Study code automation systems

- List on previous slide

• More at

- www.cs.berkeley.edu/~demmel/Sca-LAPACK-Proposal.pdf

3/3/2008 CS267 Guest Lecture 2 38

3/3/2008 CS267 Guest Lecture 2 39

Extra Slides

02/14/2006 CS267 Lecture 9 40

Overview of LAPACK and ScaLAPACK

• Standard library for dense/banded linear algebra

- Linear systems: A*x=b

- Least squares problems: minx || A*x-b ||2

- Eigenvalue problems: Ax = x, Ax = Bx

- Singular value decomposition (SVD): A = U VT

• Algorithms reorganized to use BLAS3 as much as
 possible

• Basis of math libraries on many computers, Matlab …

• Many algorithmic innovations remain

- Projects available

02/14/2006 CS267 Lecture 9 41

Performance of LAPACK (n=1000)

Performance

 of Eigen
-values,

 SVD, etc.

02/14/2006 CS267 Lecture 9 42

Performance of LAPACK (n=100)

Efficiency is

 much lower
 for a

 smaller
 matrix.

02/14/2006 CS267 Lecture 9 43

Review: BLAS 3 (Blocked) GEPP

for ib = 1 to n-1 step b … Process matrix b columns at a time

 end = ib + b-1 … Point to end of block of b columns

 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’

 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I

 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U

 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)

 - A(end+1:n , ib:end) * A(ib:end , end+1:n)

 … apply delayed updates with single matrix-multiply

 … with inner dimension b

BLAS 3

02/14/2006 CS267 Lecture 9 44

Row and Column Block Cyclic Layout

• processors and matrix blocks are

 distributed in a 2d array

•prow-by-pcol array of processors
•brow-by-bcol matrix blocks

• pcol-fold parallelism in any column,

 and calls to the BLAS2 and BLAS3 on

 matrices of size brow-by-bcol

• serial bottleneck is eased

• prow pcol and brow bcol possible,

 even desireable

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

bcol

brow

02/14/2006 CS267 Lecture 9 45

Distributed GE with a 2D Block Cyclic Layout

• block size b in the algorithm and the block sizes

 brow and bcol in the layout satisfy b=bcol.

• shaded regions indicate processors busy with

 computation or communication.

• unnecessary to have a barrier between each step of

 the algorithm, e.g.. steps 9, 10, and 11 can be
 pipelined

02/14/2006 CS267 Lecture 9 46

ScaLAPACK Performance Models (2)

(LU)

(Cholesky)

Compare Predictions and Measurements

02/14/2006 CS267 Lecture 9 47

Next release of LAPACK and ScaLAPACK

• Class projects available

• www.cs.berkeley.edu/~demmel/Sca-LAPACK-Proposal.pdf

• New or improved LAPACK algorithms

- Faster and/or more accurate routines for linear systems,
 least squares, eigenvalues, SVD

• Parallelizing algorithms for ScaLAPACK

- Many LAPACK routines not parallelized yet

• Automatic performance tuning

- Many tuning parameters in code

02/14/2006 CS267 Lecture 9 48

Recursive Algorithms

• Still uses delayed updates, but organized differently

- (formulas on board)

• Can exploit recursive data layouts

- 3x speedups on least squares for tall, thin matrices

• Theoretically optimal memory hierarchy performance

• See references at

- “Recursive Block Algorithms and Hybrid Data Structures,”
 Elmroth, Gustavson, Jonsson, Kagstrom, SIAM Review, 2004

- http://www.cs.umu.se/research/parallel/recursion/

02/14/2006 CS267 Lecture 9 49

LU Algorithm:
 1: Split matrix into two rectangles (m x n/2)
 if only 1 column, scale by reciprocal of pivot & return

 2: Apply LU Algorithm to the left part

 3: Apply transformations to right part
 (triangular solve A12 = L-1A12 and
 matrix multiplication A22=A22 -A21*A12)

 4: Apply LU Algorithm to right part

Gaussian Elimination via a Recursive Algorithm

L A12

A21 A22

F. Gustavson and S. Toledo

Most of the work in the matrix multiply
Matrices of size n/2, n/4, n/8, …

Source: Jack Dongarra

02/14/2006 CS267 Lecture 9 50

Recursive Factorizations

• Just as accurate as conventional method

• Same number of operations

• Automatic variable-size blocking

- Level 1 and 3 BLAS only !

• Simplicity of expression

• Potential for efficiency while being “cache oblivious”

- But shouldn’t recur down to single columns!

• The recursive formulation is just a rearrangement of the point
-wise LINPACK algorithm

• The standard error analysis applies (assuming the matrix
 operations are computed the “conventional” way).

02/14/2006 CS267 Lecture 9 51

LAPACK

Recursive LU

Recursive LU

LAPACK

Dual-processor

Uniprocessor

Source: Jack Dongarra

02/14/2006 CS267 Lecture 9 52

Recursive Algorithms – Limits

• Two kinds of dense matrix compositions

• One Sided
- Sequence of simple operations applied on left of matrix

- Gaussian Elimination: A = L*U or A = P*L*U

• Symmetric Gaussian Elimination: A = L*D*LT

• Cholesky: A = L*LT

- QR Decomposition for Least Squares: A = Q*R

- Can be nearly 100% BLAS 3

- Susceptible to recursive algorithms

• Two Sided
- Sequence of simple operations applied on both sides,

 alternating

- Eigenvalue algorithms, SVD

- At least ~25% BLAS 2

- Seem impervious to recursive approach?

- Some recent progress on SVD (25% vs 50% BLAS2)

02/14/2006 CS267 Lecture 9 53

Out-of-core means

 matrix lives on disk;
 too big for main memory

Much harder to hide

 latency of disk

QR much easier than LU

 because no pivoting
 needed for QR

Out of “Core” Algorithms

Source: Jack Dongarra

02/14/2006 CS267 Lecture 9 54

Some contributors (incomplete list)

02/14/2006 CS267 Lecture 9 55

Upcoming related talks

• SIAM Conference on Parallel Processing in Scientific
 Computing

- San Francisco, Feb 22-24

- http://www.siam.org/meetings/pp06/index.htm

- Applications, Algorithms, Software, Hardware

- 3 Minisymposia on Dense Linear Algebra on Friday 2/24

• MS41, MS47(*), MS56

• Scientific Computing Seminar,

- “An O(n log n) tridiagonal eigensolver”, Jonathan Moussa

- Wednesday, Feb 15, 11-12, 380 Soda

• Special Seminar

- Towards Combinatorial Preconditioners for Finite
-Elements Problems”, Prof. Sivan Toledo, Technion

- Tuesday, Feb 21, 1-2pm, 373 Soda

02/14/2006 CS267 Lecture 9 56

Extra Slides

02/14/2006 CS267 Lecture 9 57

Scales well,

 nearly full machine speed

QR (Least Squares)

02/14/2006 CS267 Lecture 9 58

Current algorithm:

Faster than initial algorithm
Occasional numerical instability

New, faster and more stable
 algorithm planned

Initial algorithm:

Numerically stable

Easily parallelized

Slow: will abandon

02/14/2006 CS267 Lecture 9 59

 The “Holy Grail” (Parlett, Dhillon, Marques)

 Perfect Output complexity (O(n * #vectors)), Embarrassingly parallel, Accurate

To be propagated throughout LAPACK and ScaLAPACK

Scalable Symmetric Eigensolver and SVD

02/14/2006 CS267 Lecture 9 60

Have good ideas to speedup

Project available!

Hardest of all to parallelize

02/14/2006 CS267 Lecture 9 61

Scalable Nonsymmetric Eigensolver

• Axi = i xi , Schur form A = QTQT

• Parallel HQR

- Henry, Watkins, Dongarra, Van de Geijn

- Now in ScaLAPACK

- Not as scalable as LU: N times as many messages

- Block-Hankel data layout better in theory, but not in ScaLAPACK

• Sign Function

- Beavers, Denman, Lin, Zmijewski, Bai, Demmel, Gu, Godunov,
 Bulgakov, Malyshev

- Ai+1 = (Ai + Ai
-1)/2 shifted projector onto Re > 0

- Repeat on transformed A to divide-and-conquer spectrum

- Only uses inversion, so scalable

- Inverse free version exists (uses QRD)

- Very high flop count compared to HQR, less stable

02/14/2006 CS267 Lecture 9 62

Assignment of parallel work in GE

• Think of assigning submatrices to threads, where
 each thread responsible for updating submatrix it
 owns

- “owner computes” rule natural because of locality

• What should submatrices look like to achieve load
 balance?

02/14/2006 CS267 Lecture 9 63

The main steps in the solution process are

• Fill: computing the matrix elements of A

• Factor: factoring the dense matrix A

• Solve: solving for one or more excitations b

• Field Calc: computing the fields scattered from the

 object

Computational Electromagnetics (MOM)

02/14/2006 CS267 Lecture 9 64

Analysis of MOM for Parallel Implementation

Task Work Parallelism Parallel Speed

Fill O(n**2) embarrassing low

Factor O(n**3) moderately diff. very high

Solve O(n**2) moderately diff. high

Field Calc. O(n) embarrassing high

02/14/2006 CS267 Lecture 9 65

BLAS2 version of GE with Partial Pivoting (GEPP)

for i = 1 to n-1

 find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)|

 … i.e. largest entry in rest of column i

 if |A(k,i)| = 0

 exit with a warning that A is singular, or nearly so

 elseif k != i

 swap rows i and k of A

 end if

 A(i+1:n,i) = A(i+1:n,i) / A(i,i)

 … each quotient lies in [-1,1]

 … BLAS 1

 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

 … BLAS 2, most work in this line

02/14/2006 CS267 Lecture 9 66

Computational Electromagnetics – Solve Ax=b

•Developed during 1980s, driven by defense applications

•Determine the RCS (radar cross section) of airplane

•Reduce signature of plane (stealth technology)

•Other applications are antenna design, medical equipment

•Two fundamental numerical approaches:

•MOM methods of moments (frequency domain)

•Large dense matrices

•Finite differences (time domain)

•Even larger sparse matrices

02/14/2006 CS267 Lecture 9 67

Computational Electromagnetics

image: NW Univ. Comp. Electromagnetics Laboratory http://nueml.ece.nwu.edu/

- Discretize surface into triangular facets using

 standard modeling tools

- Amplitude of currents on surface are

 unknowns

- Integral equation is discretized into a set of linear

 equations

02/14/2006 CS267 Lecture 9 68

Computational Electromagnetics (MOM)

After discretization the integral equation has the form

 A x = b

 where

A is the (dense) impedance matrix,

x is the unknown vector of amplitudes, and

b is the excitation vector.

(see Cwik, Patterson, and Scott, Electromagnetic Scattering on the Intel Touchstone Delta,

 IEEE Supercomputing ‘92, pp 538 - 542)

02/14/2006 CS267 Lecture 9 69

Results for Parallel Implementation on Intel Delta

Task Time (hours)

Fill (compute n2 matrix entries) 9.20

 (embarrassingly parallel but slow)

Factor (Gaussian Elimination, O(n3)) 8.25

 (good parallelism with right algorithm)

Solve (O(n2)) 2 .17

 (reasonable parallelism with right algorithm)

Field Calc. (O(n)) 0.12

 (embarrassingly parallel and fast)

The problem solved was for a matrix of size 48,672.

 2.6 Gflops for Factor - The world record in 1991.

02/14/2006 CS267 Lecture 9 70

Computational Chemistry – Ax = x

• Seek energy levels of a molecule, crystal, etc.

- Solve Schroedinger’s Equation for energy levels = eigenvalues

- Discretize to get Ax = Bx, solve for eigenvalues and eigenvectors x

- A and B large Hermitian matrices (B positive definite)

• MP-Quest (Sandia NL)

- Si and sapphire crystals of up to 3072 atoms

- A and B up to n=40000, complex Hermitian

- Need all eigenvalues and eigenvectors

- Need to iterate up to 20 times (for self-consistency)

• Implemented on Intel ASCI Red

- 9200 Pentium Pro 200 processors (4600 Duals, a CLUMP)

- Overall application ran at 605 Gflops (out of 1800 Gflops peak),

- Eigensolver ran at 684 Gflops

- www.cs.berkeley.edu/~stanley/gbell/index.html

- Runner-up for Gordon Bell Prize at Supercomputing 98

02/14/2006 CS267 Lecture 9 71

02/14/2006 CS267 Lecture 9 72

Parallelism in ScaLAPACK

• Level 3 BLAS block
 operations

- All the reduction routines

• Pipelining

- QR Iteration, Triangular
 Solvers, classic
 factorizations

• Redundant computations

- Condition estimators

• Static work assignment

- Bisection

• Task parallelism

- Sign function eigenvalue
 computations

• Divide and Conquer

- Tridiagonal and band
 solvers, symmetric
 eigenvalue problem and
 Sign function

• Cyclic reduction

- Reduced system in the

 band solver

02/14/2006 CS267 Lecture 9 73

Winner of TOPS 500 (LINPACK Benchmark)

Year Machine Tflops Factor
 faster

Peak

Tflops

Num

Procs

N

2004 Blue Gene / L, IBM 70.7 2.0 91.8 32768 .93M

200
220
03

Earth System
 Computer, NEC

35.6 4.9 40.8 5104 1.04M

2001 ASCI White,
 IBM SP Power 3

7.2 1.5 11.1 7424 .52M

2000 ASCI White,
 IBM SP Power 3

4.9 2.1 11.1 7424 .43M

1999 ASCI Red,
 Intel PII Xeon

2.4 1.1 3.2 9632 .36M

1998 ASCI Blue,
 IBM SP 604E

2.1 1.6 3.9 5808 .43M

1997 ASCI Red,
 Intel Ppro, 200 MHz

1.3 3.6 1.8 9152 .24M

1996 Hitachi CP-PACS .37 1.3 .6 2048 .10M

1995 Intel Paragon XP/S
 MP

.28 1 .3 6768 .13M

Source: Jack Dongarra (UTK)

